The Evolution of Zirconia: Current Developments, Classifications, and Applications
Burcu Genceli, Alper Aktosun, Tonguç Sülün
Türk Dişhekimliği Dergisi
Yıl: 2024 | Cilt: 27 | Sayı: 97 | Sayfa: 20-35

Özet

Zirkonya, diş hekimliğinde, özellikle protetik restorasyon alanında önemli bir yere sahip olan yenilikçi bir malzemedir ayrıca mekanik, optik ve biyolojik özellikleriyle farklı avantajlar sunmaktadır. Bu derleme dental zirkonyanın farklı türlerini, özelliklerini ve uygulamalarını incelerken, yeni geliştirilen zirkonya seramiklerinin ve çok katmanlı zirkonyaların önemini vurgulamakta ve aynı zamanda sinterleme ve simantasyon gibi yöntemler hakkında güncel bilgiler sunmaktadır. CAD/CAM teknolojilerinin gelişimi, üretim süreçlerindeki yenilikler, bu malzemenin yapısal ve klinik başarısını etkileyen kritik faktörler olarak karşımıza çıkmaktadır. Fakat zirkonya ile ilgili deneysel araştırmalar ve uzun dönem verilerinin yetersizliği, bu malzemenin gelecekteki potansiyelinin tam olarak değerlendirilmesini zorlaştırmaktadır. Bu derleme, zirkonyanın diş hekimliğindeki uygulamalarını ve gelecekteki potansiyelini değerlendirmek amacıyla mevcut literatürdeki güncel ve kapsamlı bilgileri sunmaktadır.

Anahtar Kelimeler

Zirkonya, Y-TZP, 3Y-TZP, 5Y-PSZ, Translusensi, Monolitik, Simantasyon, Sinterleme

Abstract

Zirconia is an innovative material that occupies a significant position in dentistry, particularly in the field of prosthetic restorations, and offers diverse advantages through its mechanical, optical, and biological properties. This review examines the different types, characteristics, and applications of dental zirconia, while emphasizing the importance of newly developed zirconia ceramics and multilayer zirconias. Additionally, this review provides up-to-date information on techniques such as sintering and cementation. The evolution of CAD/CAM technologies and innovations in production processes emerge as critical factors influencing the structural and clinical success of this material. However, the limited experimental research and scarcity of long-term data on zirconia complicate the full evaluation of its future potential. This review aims to assess the applications and future potential of zirconia in dentistry, offering current and comprehensive information from the existing literature.

Keywords

Zirconia, Y-TZP, 3Y-TZP, 5Y-PSZ, Translucent, Monolithic, Cementation, Sintering

Referanslar | References

1.        Bapat RA, Yang HJ, Chaubal T V, Dharmadhikari S, Abdulla AM, Arora S, et al. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. 2022 [cited 2023 Nov 4]; Available from: https://scholar.google.com/citations?user=DJkvOAQAAAAJ&hl=en;

2.        Zhang Y, Kelly JR. Dental ceramics for restoration and metal-veneering. Dent Clin North Am [Internet]. 2017 Oct 1 [cited 2023 Nov 4];61(4):797. Available from: /pmc/articles/PMC5657342/

3.        Denry I, Kelly JR. State of the art of zirconia for dental applications. Dental Materials. 2008 Mar 1;24(3):299–307.

4.        Makhija SK, Lawson NC, Gilbert GH, Litaker MS, McClelland JA, Louis DR, et al. Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network. J Dent [Internet]. 2016 Dec 1 [cited 2023 Nov 4];55:40–7. Available from: https://pubmed.ncbi.nlm.nih.gov/27693778/

5.        Alqutaibi AY, Alnazzawi AA, Algabri R, Aboalrejal AN, AbdElaziz MH. Clinical performance of single implant-supported ceramic and metal-ceramic crowns: A systematic review and meta-analysis of randomized clinical trials. Journal of Prosthetic Dentistry [Internet]. 2021 Sep 1 [cited 2023 Nov 4];126(3):369–76. Available from: http://www.thejpd.org/article/S0022391320304157/fulltext

6.        Blatz MB, Vonderheide M, Conejo J. The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics. J Dent Res [Internet]. 2018 Feb 1 [cited 2023 Nov 4];97(2):132. Available from: /pmc/articles/PMC6429574/

7.        Kosmač T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dental Materials. 1999 Nov 1;15(6):426–33.

8.        Turp V. GP. Zirkonyanın yapısı. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi. 2017;3(2):77–83.

9.        Ardlin BI. Transformation-toughened zirconia for dental inlays, crowns and bridges: chemical stability and effect of low-temperature aging on flexural strength and surface structure. Dental Materials. 2002 Dec 1;18(8):590–5.

10.      Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999 Jan 1;20(1):1–25.

11.      Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006 Feb 1;27(4):535–43.

12.      Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil [Internet]. 2010 [cited 2023 Nov 6];37(8):641–52. Available from: https://pubmed.ncbi.nlm.nih.gov/20406352/

13.      Nevarez-Rascon A, Aguilar-Elguezabal A, Orrantia E, Bocanegra-Bernal MH. On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content. Int J Refract Metals Hard Mater. 2009 Nov;27(6):962–70.

14.      Affatato S, Torrecillas R, Taddei P, Rocchi M, Fagnano C, Ciapetti G, et al. Advanced nanocomposite materials for orthopaedic applications. I. A long-term in vitro wear study of zirconia-toughened alumina. J Biomed Mater Res B Appl Biomater [Internet]. 2006 Jul 1 [cited 2023 Nov 4];78B(1):76–82. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.b.30462

15.      Media & Downloads – Information to download – ZERAMEX Dentalpoint AG [Internet]. [cited 2023 Nov 4]. Available from: https://www.zeramex.com/en/dental_professionals/media_downloads.php

16.      Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and Strong Ce-TZP/Alumina Nanocomposites Doped with Titania. Ceram Int [Internet]. 1998 [cited 2023 Nov 4];24(7):497–506. Available from: https://www.researchgate.net/publication/229250430_Tough_and_Strong_Ce-TZPAlumina_Nanocomposites_Doped_with_Titania

17.      Sato H, Yamada K, Pezzotti G, Nawa M, Ban S. Mechanical Properties of Dental Zirconia Ceramics Changed with Sandblasting and Heat Treatment. Dent Mater J. 2008;27(3):408–14.

18.      Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res [Internet]. 2007 [cited 2023 Nov 4];37:1–32. Available from: https://www.researchgate.net/publication/234151675_Low-Temperature_Degradation_of_Zirconia_and_Implications_for_Biomedical_Implants

19.      Ban S. Reliability and properties of core materials for all-ceramic dental restorations. JDSR. 2008;44:3–21.

20.      Ban S. Classification and Properties of Dental Zirconia as Implant Fixtures and Superstructures. Materials (Basel) [Internet]. 2021 Sep 1 [cited 2023 Nov 5];14(17). Available from: https://pubmed.ncbi.nlm.nih.gov/34500970/

21.      Kongkiatkamon S, Rokaya D, Kengtanyakich S, Peampring C. Current classification of zirconia in dentistry: an updated review. PeerJ [Internet]. 2023 Jul 14 [cited 2023 Nov 6];11:e15669. Available from: https://peerj.com/articles/15669

22.      Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dental Materials. 2014 Oct 1;30(10):1195–203.

23.      Sulaiman TA, Abdulmajeed AA, Shahramian K, Lassila L. Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia. Journal of Prosthetic Dentistry [Internet]. 2017 Aug 1 [cited 2023 Nov 6];118(2):216–20. Available from: http://www.thejpd.org/article/S002239131630614X/fulltext

24.      Busch A, Wassenaar D, Zinser W, Jäger M. A bicentric approach evaluating the combination of a hemispheric cup with a novel ceramic head in total hip arthroplasty. Orthop Rev (Pavia) [Internet]. 2021 Mar 3 [cited 2023 Nov 5];13(1). Available from: /pmc/articles/PMC8077281/

25.      Zhang Y, Lawn B. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97:140–7.

26.      Kim MJ, Kim KH, Kim YK, Kwon TY. Degree of conversion of two dual-cured resin cements light-irradiated through zirconia ceramic disks. J Adv Prosthodont [Internet]. 2013 Nov 28 [cited 2023 Nov 5];5(4):464–70. Available from: https://synapse.koreamed.org/articles/1054152

27.      Lucas TJ, Lawson NC, Janowski GM, Burgess JO. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia. Dental Materials. 2015 Dec 1;31(12):1487–92.

28.      Ilie N, Stawarczyk B. Quantification of the amount of light passing through zirconia: The effect of material shade, thickness, and curing conditions. J Dent. 2014 Jun 1;42(6):684–90.

29.      Rice RW. Effects of environment and temperature on ceramic tensile strength-grain size relations. J Mater Sci [Internet]. 1997 [cited 2023 Nov 5];32(12):3071–87. Available from: https://link.springer.com/article/10.1023/A:1018630113180

30.      Chantikul P, Bennison SJ, Lawn BR. Role of Grain Size in the Strength and R-Curve Properties of Alumina. Journal of the American Ceramic Society [Internet]. 1990 Aug 1 [cited 2023 Nov 7];73(8):2419–27. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1151-2916.1990.tb07607.x

31.      Zhang H, Li Z, Kim BN, Morita K, Yoshida H, Hiraga K, et al. Effect of alumina dopant on transparency of tetragonal zirconia. J Nanomater. 2012;2012.

32.      Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter A V., Vallittu PK, Närhi TO, et al. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater [Internet]. 2015 Oct 1 [cited 2023 Nov 5];31(10):1180–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26198027/

33.      Lim CH, Vardhaman S, Reddy N, Zhang Y. Composition, processing, and properties of biphasic zirconia bioceramics: relationship to competing strength and optical properties. Ceram Int [Internet]. 2022 Jun 15 [cited 2023 Nov 5];48(12):17095–103. Available from: https://pubmed.ncbi.nlm.nih.gov/37701057/

34.      Čokić SM, Cóndor M, Vleugels J, Meerbeek B Van, Oosterwyck H Van, Inokoshi M, et al. Mechanical properties–translucency–microstructure relationships in commercial monolayer and multilayer monolithic zirconia ceramics. Dental Materials. 2022 May 1;38(5):797–810.

35.      De Souza RA, Pietrowski MJ, Anselmi-Tamburini U, Kim S, Munir ZA, Martin M. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries. Physical Chemistry Chemical Physics [Internet]. 2008 Apr 2 [cited 2023 Nov 5];10(15):2067–72. Available from: https://pubs.rsc.org/en/content/articlehtml/2008/cp/b719363g

36.      Sulaiman TA, Camino RN, Cook R, Delgado AJ, Roulet JF, Clark WA. Time-lasting ceramic stains and glaze: A toothbrush simulation study. J Esthet Restor Dent [Internet]. 2020 Sep 1 [cited 2023 Nov 5];32(6):581–5. Available from: https://pubmed.ncbi.nlm.nih.gov/32352643/

37.      Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter A V., Lassila L V., Vallittu PK, et al. Degree of conversion of dual-polymerizing cements light polymerized through monolithic zirconia of different thicknesses and types. Journal of Prosthetic Dentistry [Internet]. 2015 Jul 1 [cited 2023 Nov 5];114(1):103–8. Available from: http://www.thejpd.org/article/S0022391315000918/fulltext

38.      Harianawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont [Internet]. 2014 Dec 17 [cited 2023 Nov 5];6(6):456–61. Available from: https://synapse.koreamed.org/articles/1054222

39.      Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. Journal of Prosthetic Dentistry [Internet]. 2018 Jul 1 [cited 2023 Nov 5];120(1):132–7. Available from: http://www.thejpd.org/article/S0022391317305565/fulltext

40.      Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand [Internet]. 2014 Feb [cited 2023 Nov 5];72(2):145–53. Available from: https://www.tandfonline.com/doi/abs/10.3109/00016357.2013.822098

41.      Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dental Materials. 2012 Apr 1;28(4):449–56.

42.      Zesewitz T, Knauber A, Nothdurft F. Fracture Resistance of a Selection of Full-Contour All-Ceramic Crowns: An In Vitro Study. Int J Prosthodont. 2014 May;27(3):264–6.

43.      ⁣Nacera Pearl Q3 Multi-Shade [Internet]. [cited 2024 Jan 2]. Available from: https://www.dentaurum.de/eng/nacera-pearl-q3-multi-shade-32309.aspx

44.      Belli R, Hurle K, Schürrlein J, Petschelt A, Werbach K, Peterlik H, et al. A Revised Relationship Between Fracture Toughness and Y2O3 Content in Modern Dental Zirconias. 2021 Feb 18 [cited 2023 Nov 5]; Available from: https://chemrxiv.org/engage/chemrxiv/article-details/60c75521842e65a163db42ad

45.      Di Cho Too T, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Liu H, et al. Influence of sintering conditions on translucency, biaxial flexural strength, microstructure, and low-temperature degradation of highly translucent dental zirconia. Dent Mater J [Internet]. 2021 [cited 2023 Nov 6];40(6):1320–8. Available from: https://pubmed.ncbi.nlm.nih.gov/34193728/

46.      Kilinc H, Sanal FA. Effect of sintering and aging processes on the mechanical and optical properties of translucent zirconia. Journal of Prosthetic Dentistry [Internet]. 2021 Jul 1 [cited 2023 Nov 6];126(1):129.e1-129.e7. Available from: http://www.thejpd.org/article/S0022391321001955/fulltext

47.      Juntavee N, Attashu S. Effect of different sintering process on flexural strength of translucency monolithic zirconia. J Clin Exp Dent [Internet]. 2018 Aug 1 [cited 2023 Nov 6];10(8):e821. Available from: /pmc/articles/PMC6174017/

48.      Sanal FA, Kilinc H. Do different sintering conditions influence bond strength between the resin cements and a currently used esthetic zirconia? J Adhes Sci Technol [Internet]. 2020 Aug 17 [cited 2023 Nov 6];34(16):1809–22. Available from: https://www.tandfonline.com/doi/abs/10.1080/01694243.2020.1783773

49.      Eichler J, Rödel J, Eisele U, Hoffman M. Effect of grain size on mechanical properties of submicrometer 3Y-TZP: Fracture strength and hydrothermal degradation. Journal of the American Ceramic Society [Internet]. 2007 Sep [cited 2023 Nov 6];90(9):2830–6. Available from: https://www.researchgate.net/publication/229869517_Effect_of_Grain_Size_on_Mechanical_Properties_of_Submicrometer_3Y-TZP_Fracture_Strength_and_Hydrothermal_Degradation

50.      Anselmi-Tamburini U, Garay JE, Munir ZA. Fast low-temperature consolidation of bulk nanometric ceramic materials. 2005 [cited 2023 Nov 6]; Available from: www.actamat-journals.com

51.      Lawson NC, Maharishi A. Strength and translucency of zirconia after high-speed sintering. J Esthet Restor Dent [Internet]. 2020 Mar 1 [cited 2024 Jan 2];32(2):219–25. Available from: https://pubmed.ncbi.nlm.nih.gov/31515932/

52.      Liu H, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Cho Too T Di, et al. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dental Materials. 2022 Feb 1;38(2):451–68.

53.      Ahmed N, Abbasi MS, Haider S, Ahmed N, Habib SR, Altamash S, et al. Fit Accuracy of Removable Partial Denture Frameworks Fabricated with CAD/CAM, Rapid Prototyping, and Conventional Techniques: A Systematic Review. Biomed Res Int. 2021;2021.

54.      Liu YC, Lin TH, Lin YY, Hu SW, Liu JF, Yang CC, et al. Optical properties evaluation of rapid sintered translucent zirconia with two dental colorimeters. J Dent Sci. 2022 Jan 1;17(1):155–61.

55.      Ersoy NM, Aydoğdu HM, Değirmenci BÜ, Çökük N, Sevimay M. The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomater Odontol Scand [Internet]. 2015 Dec 23 [cited 2023 Nov 6];1(2–4):43. Available from: /pmc/articles/PMC5433200/

56.      Lawson NC, Maharishi A. Strength and translucency of zirconia after high-speed sintering. J Esthet Restor Dent [Internet]. 2020 Mar 1 [cited 2023 Nov 6];32(2):219–25. Available from: https://pubmed.ncbi.nlm.nih.gov/31515932/

57.      Jerman E, Wiedenmann F, Eichberger M, Reichert A, Stawarczyk B. Effect of high-speed sintering on the flexural strength of hydrothermal and thermo-mechanically aged zirconia materials. Dent Mater [Internet]. 2020 Sep 1 [cited 2023 Nov 6];36(9):1144–50. Available from: https://pubmed.ncbi.nlm.nih.gov/32620333/

58.      Jansen JU, Lümkemann N, Letz I, Pfefferle R, Sener B, Stawarczyk B. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials. J Prosthet Dent [Internet]. 2019 Oct 1 [cited 2023 Nov 6];122(4):396–403. Available from: https://pubmed.ncbi.nlm.nih.gov/30982619/

59.      Lümkemann N, Stawarczyk B. Impact of hydrothermal aging on the light transmittance and flexural strength of colored yttria-stabilized zirconia materials of different formulations. J Prosthet Dent. 2021 Mar 1;125(3):518–26.

60.      Cokic SM, Vleugels J, Van Meerbeek B, Camargo B, Willems E, Li M, et al. Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent Mater [Internet]. 2020 Jul 1 [cited 2023 Nov 6];36(7):959–72. Available from: https://pubmed.ncbi.nlm.nih.gov/32493658/

61.      Yang CC, Ding SJ, Lin TH, Yan M. Mechanical and optical properties evaluation of rapid sintered dental zirconia. Ceram Int [Internet]. 2020 Dec 1 [cited 2023 Nov 6];46(17):26668–74. Available from: https://www.researchgate.net/publication/343100100_Mechanical_and_optical_properties_evaluation_of_rapid_sintered_dental_zirconia

62.      Madfa AA, Al-Sanabani FA, Al-Qudami NH, Al-Sanabani JS, Amran AG. Use of Zirconia in Dentistry: An Overview. The Open Biomaterials Journal. 2014 Feb 7;5(1):1–7.

63.      Alammar A, Blatz MB. The resin bond to high-translucent zirconia—A systematic review. Journal of Esthetic and Restorative Dentistry [Internet]. 2022 Jan 1 [cited 2023 Nov 6];34(1):117–35. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jerd.12876

64.      Russo DS, Cinelli F, Sarti C, Giachetti L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dentistry Journal 2019, Vol 7, Page 74 [Internet]. 2019 Aug 1 [cited 2023 Nov 8];7(3):74. Available from: https://www.mdpi.com/2304-6767/7/3/74/htm

65.      Melo RM, Souza ROA, Dursun E, Monteiro EBC, Valandro LF, Bottino MA. Surface Treatments of Zirconia to Enhance Bonding Durability. Oper Dent [Internet]. 2015 Nov 1 [cited 2023 Nov 8];40(6):636–43. Available from: https://dx.doi.org/10.2341/14-144-L

66.      Heboyan A, Vardanyan A, Karobari MI, Marya A, Avagyan T, Tebyaniyan H, et al. Dental Luting Cements: An Updated Comprehensive Review. Molecules 2023, Vol 28, Page 1619 [Internet]. 2023 Feb 8 [cited 2023 Nov 8];28(4):1619. Available from: https://www.mdpi.com/1420-3049/28/4/1619/htm

67.      Campos F, Almeida CS, Rippe MP, De Melo RM, Valandro LF, Bottino MA. Resin Bonding to a Hybrid Ceramic: Effects of Surface Treatments and Aging. Oper Dent [Internet]. 2016 Mar 1 [cited 2023 Nov 8];41(2):171–8. Available from: https://dx.doi.org/10.2341/15-057-L

68.      Guarda GB, Correr AB, Gonçalves LS, Costa AR, Borges GA, Sinhoreti MAC, et al. Effects of Surface Treatments, Thermocycling, and Cyclic Loading on the Bond Strength of a Resin Cement Bonded to a Lithium Disilicate Glass Ceramic. Oper Dent [Internet]. 2013 Mar 1 [cited 2023 Nov 8];38(2):208–17. Available from: https://dx.doi.org/10.2341/11-076-L

69.      Sato Anami RM Melo LF Valandro MA Bottino TL, Sato TP, student Md, Costa Anami L, Melo RM, Felipe Valandro L, et al. Effects of Surface Treatments on the Bond Strength Between Resin Cement and a New Zirconia-reinforced Lithium Silicate Ceramic. Oper Dent [Internet]. 2016 May 1 [cited 2023 Nov 8];41(3):284–92. Available from: https://dx.doi.org/10.2341/14-357-L

70.      Jauregui-Ulloa J, Marocho S. Bonding and Debonding of Zirconia Using Laser Approaches. Int J Prosthodont [Internet]. 2022 Jul [cited 2023 Dec 29];35(4):530–44. Available from: https://pubmed.ncbi.nlm.nih.gov/36125876/

71.      Hou Y, Yi J, Huang Y, Gao J, Chen Y, Wang C. Effect of Er:YAG Laser Etching on the Shear Bond Strength and Microleakage of Self-Glazed Zirconia Ceramics. Photobiomodul Photomed Laser Surg [Internet]. 2020 May 1 [cited 2023 Dec 29];38(5):289–94. Available from: https://pubmed.ncbi.nlm.nih.gov/31944868/

72.      Altan B, Cinar S, Tuncelli B. Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Niger J Clin Pract [Internet]. 2019 Nov 1 [cited 2023 Dec 29];22(11):1475–82. Available from: https://pubmed.ncbi.nlm.nih.gov/31719267/

73.      Akin H, Tugut F, Akin GE, Guney U, Mutaf B. Effect of Er:YAG laser application on the shear bond strength and microleakage between resin cements and Y-TZP ceramics. Lasers Med Sci [Internet]. 2012 Mar [cited 2023 Dec 29];27(2):333–8. Available from: https://pubmed.ncbi.nlm.nih.gov/21253800/

74.      Erdem A, Akar GC, Erdem A, Kose T. Effects of different surface treatments on bond strength between resin cements and zirconia ceramics. Oper Dent [Internet]. 2014 [cited 2023 Dec 29];39(3). Available from: https://pubmed.ncbi.nlm.nih.gov/24299447/

75.      Lin Y, Song X, Chen Y, Zhu Q, Zhang W. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement. Photomed Laser Surg [Internet]. 2013 Dec 1 [cited 2023 Dec 29];31(12):619–25. Available from: https://pubmed.ncbi.nlm.nih.gov/24236602/

76.      Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, et al. Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg [Internet]. 2009 Jun 1 [cited 2023 Dec 29];27(3):473–9. Available from: https://pubmed.ncbi.nlm.nih.gov/19405819/

77.      Liu L, Liu S, Song X, Zhu Q, Zhang W. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics. Lasers Med Sci [Internet]. 2015 Feb 1 [cited 2023 Dec 29];30(2):627–34. Available from: https://pubmed.ncbi.nlm.nih.gov/23828494/

78.      Usumez A, Hamdemirci N, Koroglu BY, Simsek I, Parlar O, Sari T. Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med Sci [Internet]. 2013 Jan [cited 2023 Dec 29];28(1):259–66. Available from: https://pubmed.ncbi.nlm.nih.gov/22718473/

79.      Soltaninejad F, Valian A, Moezizadeh M, Khatiri M, Razaghid H, Nojehdehian H. Nd:YAG Laser Treatment of Bioglass-coated Zirconia Surface and Its Effect on Bond Strength and Phase Transformation. J Adhes Dent [Internet]. 2018 [cited 2023 Dec 29];20(5):379–87. Available from: https://pubmed.ncbi.nlm.nih.gov/30349907/

80.      Keshvad A, Hakimaneh SMR. Microtensile Bond Strength of a Resin Cement to Silica-Based and Y-TZP Ceramics Using Different Surface Treatments. J Prosthodont [Internet]. 2018 Jan 1 [cited 2023 Dec 29];27(1):67–74. Available from: https://pubmed.ncbi.nlm.nih.gov/28422367/

81.      Mahmoodi N, Hooshmand T, Heidari S, Khoshro K. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements. Lasers Med Sci [Internet]. 2016 Feb 1 [cited 2023 Dec 29];31(2):205–11. Available from: https://pubmed.ncbi.nlm.nih.gov/26690357/

82.      Akyil MŞ, Uzun IH, Bayindir F. Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed Laser Surg [Internet]. 2010 Dec 1 [cited 2023 Dec 29];28(6):801–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20969444/

83.      Gomes AL, Ramos JC, Santos-del Riego S, Montero J, Albaladejo A. Thermocycling effect on microshear bond strength to zirconia ceramic using Er:YAG and tribochemical silica coating as surface conditioning. Lasers Med Sci [Internet]. 2015 Feb 1 [cited 2023 Dec 29];30(2):787–95. Available from: https://pubmed.ncbi.nlm.nih.gov/24013623/

84.      Jevnikar P, Krnel K, Kocjan A, Funduk N, Kosmač T. The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics. Dental Materials. 2010;26(7):688–96.

85.      Scherrer SS, Cattani-Lorente M, Vittecoq E, De Mestral F, Griggs JA, Wiskott HWA. Fatigue behavior in water of Y-TZP zirconia ceramics after abrasion with 30 μm silica-coated alumina particles. Dental Materials. 2011 Feb 1;27(2):e28–42.

86.      Guess PC, Zhang Y, Kim JW, Rekow ED, Thompson VP. Damage and Reliability of Y-TZP after Cementation Surface Treatment. http://dx.doi.org/101177/0022034510363253 [Internet]. 2010 Mar 30 [cited 2023 Nov 6];89(6):592–6. Available from: https://journals.sagepub.com/doi/10.1177/0022034510363253

87.      Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N, et al. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dental Materials. 2018 Mar 1;34(3):508–18.

88.      Inokoshi M, Shimizubata M, Nozaki K, Takagaki T, Yoshihara K, Minakuchi S, et al. Impact of sandblasting on the flexural strength of highly translucent zirconia. J Mech Behav Biomed Mater [Internet]. 2021 Mar 1 [cited 2023 Nov 6];115. Available from: https://pubmed.ncbi.nlm.nih.gov/33338964/

89.      Inokoshi M, Zhang F, Vanmeensel K, De Munck J, Minakuchi S, Naert I, et al. Residual compressive surface stress increases the bending strength of dental zirconia. Dent Mater [Internet]. 2017 Apr 1 [cited 2023 Nov 6];33(4):e147–54. Available from: https://pubmed.ncbi.nlm.nih.gov/28077209/

90.      Bona A Della, Della A. Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography. Journal of Applied Oral Science [Internet]. 2005 Jun [cited 2023 Nov 9];13(2):101–9. Available from: https://www.scielo.br/j/jaos/a/y8FvSQ3XDcNbh48rWyLj95R/?lang=en

91.      Rigos AE, Sarafidou K, Kontonasaki E. Zirconia bond strength durability following artificial aging: A systematic review and meta-analysis of in vitro studies. Jpn Dent Sci Rev [Internet]. 2023 Dec 1 [cited 2024 Jan 4];59:138–59. Available from: https://pubmed.ncbi.nlm.nih.gov/37274447/

92.      Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, et al. Chemical interaction mechanism of 10-MDP with zirconia. Sci Rep [Internet]. 2017 Mar 30 [cited 2023 Nov 6];7. Available from: /pmc/articles/PMC5372092/

93.      Tanoue N, Koishi Y, Atsuta M, Matsumura H. Properties of dual-curable luting composites polymerized with single and dual curing modes. J Oral Rehabil [Internet]. 2003 Oct 1 [cited 2023 Nov 6];30(10):1015–21. Available from: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2842.2003.01074.x

94.      Rasetto FH, Driscoll CF, Prestipino V, Masri R, Von Fraunhofer JA. Light transmission through all-ceramic dental materials: A pilot study. Journal of Prosthetic Dentistry [Internet]. 2004 May 1 [cited 2023 Nov 6];91(5):441–6. Available from: http://www.thejpd.org/article/S0022391304001106/fulltext

95.      Alaniz JE, Perez-Gutierrez FG, Aguilar G, Garay JE. Optical properties of transparent nanocrystalline yttria stabilized zirconia. Opt Mater (Amst). 2009 Nov 1;32(1):62–8.

96.      Myers ML, Caughman WF, Rueggeberg FA. Effect of Restoration Composition, Shade, and Thickness on the Cure of a Photoactivated Resin Cement. Journal of Prosthodontics [Internet]. 1994 Sep 1 [cited 2023 Nov 6];3(3):149–57. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1532-849X.1994.tb00146.x

97.      Chan KC, Boyer DB. Curing Light-activated Composite Cement through Porcelain. http://dx.doi.org/101177/00220345890680030801 [Internet]. 1989 Mar 1 [cited 2023 Nov 6];68(3):476–80. Available from: https://journals.sagepub.com/doi/10.1177/00220345890680030801

98.      Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter A V., Vallittu PK, Närhi TO, et al. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater [Internet]. 2015 Oct 1 [cited 2024 Jan 4];31(10):1180–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26198027/

99.      Lee SY, Cho C Bin, Koak JY, Yang SE. The effect of zirconia thickness and curing time on shear bond strength of dualcure resin cement. Dent Mater J [Internet]. 2016 Jan 31 [cited 2024 Jan 2];35(1):132–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26830834/

100.    Fidalgo-Pereira R, Torres O, Carvalho Ó, Silva FS, Catarino SO, Özcan M, et al. A Scoping Review on the Polymerization of Resin-Matrix Cements Used in Restorative Dentistry. Materials [Internet]. 2023 Feb 1 [cited 2024 Jan 2];16(4). Available from: /pmc/articles/PMC9961405/

101.    Yang B, Lange-Jansen HC, Scharnberg M, Wolfart S, Ludwig K, Adelung R, et al. Influence of saliva contamination on zirconia ceramic bonding. Dental Materials. 2008 Apr 1;24(4):508–13.

102.    Feitosa SA, Patel D, Borges ALS, Alsheeri EZ, Bottino MA, Özcan M, et al. Effect of Cleansing Methods on Saliva-Contaminated Zirconia—An Evaluation of Resin Bond Durability. Oper Dent [Internet]. 2015 Mar 1 [cited 2023 Nov 6];40(2):163–71. Available from: https://dx.doi.org/10.2341/13-323-L

103.    Kim DH, Son JS, Jeong SH, Kim YK, Kim KH, Kwon TY. Efficacy of various cleaning solutions on saliva-contaminated zirconia for improved resin bonding. J Adv Prosthodont [Internet]. 2015 Apr 1 [cited 2023 Nov 6];7(2):85–92. Available from: https://doi.org/10.4047/jap.2015.7.2.85

104.    Ishii R, Tsujimoto A, Takamizawa T, Tsubota K, Suzuki T, Shimamura Y, et al. Influence of surface treatment of contaminated zirconia on surface free energy and resin cement bonding. Dent Mater J. 2015 Jan 30;34(1):91–7.

105.    Tian F, Londono J, Villalobos V, Pan Y, Ho HX, Eshera R, et al. Effectiveness of different cleaning measures on the bonding of resin cement to saliva-contaminated or blood-contaminated zirconia. J Dent [Internet]. 2022 May 1 [cited 2023 Dec 28];120. Available from: https://pubmed.ncbi.nlm.nih.gov/35248674/

106.    Noronha M dos S, Fronza BM, André CB, de Castro EF, Soto-Montero J, Price RB, et al. Effect of zirconia decontamination protocols on bond strength and surface wettability. Journal of Esthetic and Restorative Dentistry [Internet]. 2020 Jul 1 [cited 2023 Dec 28];32(5):521–9. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jerd.12615

107.    Angkasith P, Burgess JO, Bottino MC, Lawson NC. Cleaning Methods for Zirconia Following Salivary Contamination. Journal of Prosthodontics [Internet]. 2016 Jul 1 [cited 2023 Nov 6];25(5):375–9. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jopr.12441

108.    Aung SSMP, Takagaki T, Lyann SK, Ikeda M, Inokoshi M, Sadr A, et al. Effects of alumina-blasting pressure on the bonding to super/ultra-translucent zirconia. Dental Materials. 2019 May 1;35(5):730–9.

109.    Silveira MPM, Ramos N de C, Lopes G da RS, Tribst JPM, Bottino MA. Bond Strength between Different Zirconia-Based Ceramics and Resin Cement before and after Aging. Coatings 2022, Vol 12, Page 1601 [Internet]. 2022 Oct 21 [cited 2023 Nov 6];12(10):1601. Available from: https://www.mdpi.com/2079-6412/12/10/1601/htm

110.    Shimizu H, Inokoshi M, Takagaki T, Uo M, Minakuchi S. Bonding efficacy of 4-META/MMA-TBB resin to surface-treated highly translucent dental zirconia. Journal of Adhesive Dentistry [Internet]. 2018 [cited 2023 Nov 6];20(5). Available from: https://www.quintessence-publishing.com/deu/de/article/843438/the-journal-of-adhesive-dentistry/2018/05/bonding-efficacy-of-4-metamma-tbb-resin-to-surface-treated-highly-translucent-dental-zirconia

111.    Arezoobakhsh A, Shayegh SS, Jamali Ghomi A, Hakimaneh SMR. Comparison of marginal and internal fit of 3-unit zirconia frameworks fabricated with CAD-CAM technology using direct and indirect digital scans. J Prosthet Dent. 2020 Jan 1;123(1):105–12.

112.    Khayat W, Chebib N, Finkelman M, Khayat S, Ali A. Effect of grinding and polishing on roughness and strength of zirconia. J Prosthet Dent. 2018 Apr 1;119(4):626–31.

113.    Aboushelib MN, Wang H. Effect of surface treatment on flexural strength of zirconia bars. J Prosthet Dent. 2010 Aug 1;104(2):98–104.

114.    Lee J, Tieslau M. Panel LM unit root tests with level and trend shifts. Econ Model. 2019 Aug 1;80:1–10.

115.    De Souza RH, Kaizer MR, Borges CEP, Fernandes ABF, Correr GM, Diógenes AN, et al. Flexural strength and crystalline stability of a monolithic translucent zirconia subjected to grinding, polishing and thermal challenges. Ceram Int. 2020 Nov 1;46(16):26168–75.

116.    Wongkamhaeng K, Dawson D V., Holloway JA, Denry I. Effect of Surface Modification on In-Depth Transformations and Flexural Strength of Zirconia Ceramics. Journal of Prosthodontics. 2019 Jan 1;28(1):e364–75.

117.    Kheur M, Lakha T, Shaikh S, Kheur S, Qamri B, Zhen LW, et al. A Comparative Study on Simulated Chairside Grinding and Polishing of Monolithic Zirconia. Materials (Basel) [Internet]. 2022 Mar 1 [cited 2024 Jan 4];15(6). Available from: https://pubmed.ncbi.nlm.nih.gov/35329653/

118.    Botelho MG, Dangay S, Shih K, Lam WYH. The effect of surface treatments on dental zirconia: An analysis of biaxial flexural strength, surface roughness and phase transformation. J Dent. 2018 Aug 1;75:65–73.

119.    Ferraris F, Conti A. Superficial roughness on composite surface, composite enamel and composite dentin junctions after different finishing and polishing procedures. Part I: roughness after treatments with tungsten carbide vs diamond burs. Int J Esthet Dent. 2014;

120.    Ercoli C, Rotella M, Funkenbusch PD, Russell S, Feng C. In vitro comparison of the cutting efficiency and temperature production of 10 different rotary cutting instruments. Part I: Turbine. Journal of Prosthetic Dentistry [Internet]. 2009 Apr 1 [cited 2024 Jan 4];101(4):248–61. Available from: http://www.thejpd.org/article/S0022391309600494/fulltext

121.    Wang Y, Lam WYH, Luk HWK, Øilo M, Shih K, Botelho MG. The adverse effects of tungsten carbide grinding on the strength of dental zirconia. Dental Materials. 2020 Apr 1;36(4):560–9.

122.    Tachibana K, Atsuta I, Tsukiyama Y, Kuwatsuru R, Morita T, Yoshimatsu H, et al. The need for polishing and occlusal adjustment of zirconia prostheses for wear on antagonist teeth. Dent Mater J. 2021 May 25;40(3):650–6.

123.    Caglar I, Ates SM, Duymus ZY. The effect of various polishing systems on surface roughness and phase transformation of monolithic zirconia. J Adv Prosthodont [Internet]. 2018 Apr 1 [cited 2024 Jan 4];10(2):132–7. Available from: https://doi.org/10.4047/jap.2018.10.2.132

124.    Khayat W, Chebib N, Finkelman M, Khayat S, Ali A. Effect of grinding and polishing on roughness and strength of zirconia. Journal of Prosthetic Dentistry [Internet]. 2018 Apr 1 [cited 2024 Jan 4];119(4):626–31. Available from: http://www.thejpd.org/article/S0022391317302810/fulltext

125.    Mohammadi-Bassir M, Babasafari M, Rezvani MB, Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. Journal of Prosthetic Dentistry [Internet]. 2017 Nov 1 [cited 2024 Jan 4];118(5):658–65. Available from: http://www.thejpd.org/article/S0022391317300501/fulltext

126.    Park C, Vang MS, Park SW, Lim HP. Effect of various polishing systems on the surface roughness and phase transformation of zirconia and the durability of the polishing systems. Journal of Prosthetic Dentistry [Internet]. 2017 Mar 1 [cited 2024 Jan 4];117(3):430–7. Available from: http://www.thejpd.org/article/S0022391316305364/fulltext

127.    Işeri U, Özkurt Z, Yalniz A, Kazazoglu E. Comparison of different grinding procedures on the flexural strength of zirconia. J Prosthet Dent [Internet]. 2012 May [cited 2024 Jan 4];107(5):309–15. Available from: https://pubmed.ncbi.nlm.nih.gov/22546308/

128.    Saker S, Özcan M. Effect of surface finishing and polishing procedures on color properties and translucency of monolithic zirconia restorations at varying thickness. Journal of Esthetic and Restorative Dentistry [Internet]. 2021 Sep 1 [cited 2024 Jan 4];33(6):953–63. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jerd.12681

129.    Spintzyk S, Geis-Gerstorfer J, Bourauel C, Keilig L, Lohbauer U, Brune A, et al. Biaxial flexural strength of zirconia: A round robin test with 12 laboratories. Dental Materials. 2021 Feb 1;37(2):284–95.

130.    Gaonkar SH, Aras MA, Chitre V. An in vitro study to compare the surface roughness of glazed and chairside polished dental monolithic zirconia using two polishing systems. J Indian Prosthodont Soc [Internet]. 2020 Apr 1 [cited 2024 Jan 4];20(2):186–92. Available from: https://journals.lww.com/jips/fulltext/2020/20020/an_in_vitro_study_to_compare_the_surface_roughness.9.aspx

131.    Preis V, Grumser K, Schneider-Feyrer S, Behr M, Rosentritt M. The Effectiveness of Polishing Kits: Influence on Surface Roughness of Zirconia. International Journal of Prosthodontics. 2015 Mar;28(2):149–51.

132.    Zucuni CP, Guilardi LF, Rippe MP, Pereira GKR, Valandro LF. Polishing of Ground Y-TZP Ceramic is Mandatory for Improving the Mechanical Behavior. Braz Dent J [Internet]. 2018 Sep 1 [cited 2024 Jan 4];29(5):483–91. Available from: https://www.scielo.br/j/bdj/a/qM6McrWdL9G88mfhJDyTKxv/?lang=en

133.    Preis V, Grumser K, Schneider-Feyrer S, Behr M, Rosentritt M. The effectiveness of polishing kits: influence on surface roughness of zirconia. Int J Prosthodont [Internet]. 2015 Mar [cited 2024 Jan 4];28(2):149–51. Available from: https://pubmed.ncbi.nlm.nih.gov/25822299/

134.    Chavali R, Lin CP, Lawson NC. Evaluation of Different Polishing Systems and Speeds for Dental Zirconia. J Prosthodont [Internet]. 2017 Jul 1 [cited 2024 Jan 4];26(5):410–8. Available from: https://pubmed.ncbi.nlm.nih.gov/26618785/

135.    Limpuangthip N, Poosanthanasarn E, Salimee P. Surface Roughness and Hardness of CAD/CAM Ceramic Materials after Polishing with a Multipurpose Polishing Kit: An In Vitro Study. Eur J Dent [Internet]. 2023 [cited 2024 Jan 4];17(4). Available from: https://pubmed.ncbi.nlm.nih.gov/36513337/

136.    Vichi A, Fabian Fonzar R, Goracci C, Carrabba M, Ferrari M. Effect of Finishing and Polishing on Roughness and Gloss of Lithium Disilicate and Lithium Silicate Zirconia Reinforced Glass Ceramic for CAD/CAM Systems. Oper Dent [Internet]. 2018 Jan 1 [cited 2024 Jan 4];43(1):90–100. Available from: https://pubmed.ncbi.nlm.nih.gov/29284101/

137.    Huh YH, Park CJ, Cho LR. Evaluation of various polishing systems and the phase transformation of monolithic zirconia. J Prosthet Dent [Internet]. 2016 Sep 1 [cited 2024 Jan 4];116(3):440–9. Available from: https://pubmed.ncbi.nlm.nih.gov/27061631/

138.    Mohammadi-Bassir M, Babasafari M, Rezvani MB, Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. J Prosthet Dent. 2017 Nov 1;118(5):658–65.

139.    Hatanaka GR, Polli GS, Adabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent. 2020 Feb 1;123(2):330–7.

140.    Zucuni CP, Pereira GKR, Dapieve KS, Rippe MP, Bottino MC, Valandro LF. Low-fusing porcelain glaze application does not damage the fatigue strength of Y-TZP. J Mech Behav Biomed Mater. 2019 Nov 1;99:198–205.

141.    Vila-Nova TEL, Gurgel de Carvalho IH, Moura DMD, Batista AUD, Zhang Y, Paskocimas CA, et al. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dental Materials. 2020 Apr 1;36(4):e126–39.

142.    Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res [Internet]. 2014 Dec 25 [cited 2024 Jan 4];93(12):1235–42. Available from: https://journals.sagepub.com/doi/10.1177/0022034514553627

143.    da Rosa LS, Pilecco RO, Sarkis-Onofre R, Kantorski KZ, Valandro LF, Rocha Pereira GK. Should finishing, polishing or glazing be performed after grinding YSZ ceramics? A systematic review and meta-analysis. J Mech Behav Biomed Mater. 2023 Feb 1;138:105654.

144.    Heintze SD, Cavalleri A, Forjanic M, Zellweger G, Rousson V. Wear of ceramic and antagonist--a systematic evaluation of influencing factors in vitro. Dent Mater [Internet]. 2008 Apr [cited 2024 Jan 4];24(4):433–49. Available from: https://pubmed.ncbi.nlm.nih.gov/17720238/

145.    Fischer J, Grohmann P, Stawarczyk B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J [Internet]. 2008 [cited 2024 Jan 4];27(3):448–54. Available from: https://pubmed.ncbi.nlm.nih.gov/18717175/

146.    Kosmač T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dental Materials. 1999;15(6):426–33.

147.    Inokoshi M, Zhang F, Vanmeensel K, De Munck J, Minakuchi S, Naert I, et al. Residual compressive surface stress increases the bending strength of dental zirconia. Dent Mater [Internet]. 2017 Apr 1 [cited 2024 Jan 4];33(4):e147–54. Available from: https://pubmed.ncbi.nlm.nih.gov/28077209/

148.    Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res [Internet]. 2006 Oct [cited 2024 Jan 4];17 Suppl 2(SUPPL. 2):68–81. Available from: https://pubmed.ncbi.nlm.nih.gov/16968383/

149.    Jonsson G, Eckerdal O, Isberg A. Thickness of the articular soft tissue of the temporal component in temporomandibular joints with and without disk displacement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 1999 [cited 2023 Dec 6];87(1):20–6. Available from: https://pubmed.ncbi.nlm.nih.gov/9927075/

150.    Willems G, Lambrechts P, Braem M, Vuylsteke-Wauters M, Vanherle G. The surface roughness of enamel-to-enamel contact areas compared with the intrinsic roughness of dental resin composites. J Dent Res [Internet]. 1991 [cited 2024 Jan 4];70(9):1299–305. Available from: https://pubmed.ncbi.nlm.nih.gov/1918580/

151.    Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO. The wear of polished and glazed zirconia against enamel. J Prosthet Dent [Internet]. 2013 Jan [cited 2024 Jan 4];109(1):22–9. Available from: https://pubmed.ncbi.nlm.nih.gov/23328193/

152.    Happe A, Röling N, Schäfer A, Rothamel D. Effects of different polishing protocols on the surface roughness of Y-TZP surfaces used for custom-made implant abutments: a controlled morphologic SEM and profilometric pilot study. J Prosthet Dent [Internet]. 2015 May 1 [cited 2024 Jan 4];113(5):440–7. Available from: https://pubmed.ncbi.nlm.nih.gov/25749083/